FEUILLE D'EXERCICES

EX 1 :Soit f la fonction définie par $f(x, y) = x^3 y^3 \cos \frac{1}{y} \text{ si } y \neq 0$ f(x, y) = 0 si y = 0

- 1) Montrer l'existence de dérivées partielles d'ordre 1 de la fonction f en tout point $(x, y) \in \mathbf{R}^2$ et les calculer.
- 2) Etudier **l'existence** de dérivées partielles d'ordre 2 en (1,0).

EX 2: Déterminer toutes les fonctions réelles de classe C^1 de \mathbb{R}^2 dans \mathbb{R} telles que $\forall (x, y) \in \mathbb{R}^2$, $\partial_1(f)(x, y) = 0$.

EX 3 : Déterminer les fonctions réelles de classe C^1 sur \mathbf{R}^2 telles que $\forall (x,y) \in \mathbf{R}^2$, $\partial_1(f)(x,y) = 3x^2y - 2y^2$ et $\partial_2(f)(x,y) = x^3 - 4xy + 6y^2$.

EX 4: Soit $A: \mathbb{R}^2 \to \mathbb{R}$ une application de classe C^2 et $f: \mathbb{R} \to \mathbb{R}$ de classe C^2 telles que :

$$\forall (x, y) \in \mathbf{R}^2, f(x+y) = f(x) + f(y) + A(x, y)$$

Montrer que : $\forall (x, y) \in \mathbb{R}^2$, $f''(x+y) = \partial_{1,2}^2(A)(x, y)$

 $(\mathbf{R}_*^{})^2 \xrightarrow{f} \mathbf{R}$

EX 5: Soit la fonction

$$(x,y) \longrightarrow x^2 + y^2 + \frac{1}{x+y}$$

- 1) Montrer que f est de classe C^2 sur l'ouvert et calculer ses dérivées partielles .
- 2) Ecrire la matrice hessienne de f en $a=(\frac{1}{2},\frac{1}{2})$ et le développement limité de f à l'ordre 2 au voisinage de a .
- 3) Déterminer les dérivées première et seconde directionnelle de f en a de direction h = (1,1) .

EX 6 : Soit $n \ge 2$.On considère la fonction de n variables réelles, notée f, définie par :

$$\forall (x_1, x_2, ..., x_n) \in \mathbb{R}^n, \quad f(x_1, x_2, ..., x_n) = \sum_{k=1}^n x_k^2 + (\sum_{k=1}^n x_k)^2 - \sum_{k=1}^n x_k$$

- 1) Montrer que f est de classe C^2 sur ${\rm I\!R}^n$. Calculer les dérivées premières et secondes de f.
- 2) Montrer que les dérivées partielles d'ordre 1 de f s'annulent simultanément est un seul point a. Vérifier que la hessienne de f en ce point est la matrice $A_n = 2(I_n + J_n)$, où I_n désigne la matrice unité de $M_n(\mathbb{R})$ et J_n la matrice de $M_n(\mathbb{R})$ dont tous les éléments sont égaux à 1.
- 3) Ecrire le développement limité de f à l'ordre 2 au voisinage de a .

EX 7 : On pose $f(x_1, x_2, ..., x_n) = \frac{1}{2}q(x)$ où q est la forme quadratique sur \mathbf{R}^n associée à une matrice $A = (a_{i,j}) \in \mathbf{S}_n(\mathbf{R})$. Déterminer la matrice hessienne de f.