FEUILLE D'EXERCICES

EX 1 : I) \mathbb{R}^3 est rapporté à sa base canonique $(e_1 e_2, e_3)$.

$$f(e_1) = (1, -3, -2)$$

Soit f l'endomorphisme de \mathbb{R}^3 tel que $f(e_2)=(1,-3,-2)$

$$f(e_3) = (-1, 3, 2)$$

On note A la matrice de f relativement à la base canonique $(e_1 e_2, e_3)$.

- 1) Quelle est l'image du triplet (x, yz) par f? Quel est le rang de A?
- 2) Déterminer Kerf et Im f . f est il un automorphisme de \mathbf{R}^3 ?
- 3) Prouver que Im $f \subset Kerf$. En déduire que fof = 0.
- II) Soit E un espace vectoriel de dimension 3 . Soit f un endomorphisme de E tel que $f \neq 0$ et f of f = 0 .
 - 1) Comparer Kerf et Im f . Prouver que dim Kerf = 2.
 - 2) Prouver qu'il existe une base $(u_1\,,u_2\,u_3)$ tel que $f(u_1)\!=\!u_2$, $u_2\!\in\!\mathit{Kerf}$, $u_3\!\in\!\mathit{Kerf}$.
- **EX 2 :** Soit $\mathbf{M}_{2}[\mathbf{K}]$

$$\mathbf{M}_{2}[\mathbf{K}] \xrightarrow{f} \mathbf{M}_{2}[\mathbf{K}]$$

- 1) Prouver que f est un endomorphisme de $\mathbf{M}_{2}[\mathbf{K}]$.
- 2) Déterminer Imf et Kerf
- 3) Déterminer la matrice de f dans la base $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \end{pmatrix}$ et retrouver les résultats du 2) .
- **EX 3:** Soit la matrice $A = (a_{ij})_{\substack{1 \le i \le n+1 \\ 1 \le j \le n+1}}$ avec $a_{ij} = i \quad si \quad j = i+1$ $a_{ij} = 0 \quad si \quad j \ne i+1$
 - 1) Ecrire la matrice A.
 - 2) Soit f l'endomorphisme de $\mathbf{R}_n[\mathbf{X}]$ admettant la matrice A dans la base canonique de $\mathbf{R}_n[\mathbf{X}]$. Déterminer $f(X^k)$ pour $k \in [0,n]$, puis f(P) pour $P \in \mathbf{R}_n[X]$.
 - 3) En déduire $A^{n+1} = 0$.
- **EX 4 :**1) Démontrer que dans $\mathbf{M}_{3}[\mathbf{R}]$ $\begin{pmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{pmatrix}$ et $\begin{pmatrix} a & 0 & 0 \\ 0 & c & 0 \\ 0 & 0 & b \end{pmatrix}$ sont semblables .
- 2) Donner un argument simple qui prouve que $A = (i+j)_{1 \le j \le n}$ et $A = (i^2)_{1 \le j \le n}$ ne sont pas semblables.
- **EX 5 :** Que dire des vecteurs u_1, u_2, u_3 de \mathbb{R}^3 dans les cas suivants :

1)
$$rg(u_1, u_2) = 2$$
 et $rg(u_1, u_2, u_3) = 2$

- 2) $rg(u_1, u_2, u_3) = 3$.
- $\mathbf{EX} \ \mathbf{6}$: Soit f et g deux endomorphismes d'un espace vectoriel E .
 - 1) Quelle inclusion évidente y a t-il entre $\operatorname{Im} g$ et $\operatorname{Im}(gof)$?

On suppose f est bijective . Montrer alors qu'il y a égalité , puis en déduire rg(gof) = rg(g).

2) Quelle inclusion évidente y a t-il entre Kerf et Ker(gof) ?

On suppose g est bijective. Montrer alors qu'il y a égalité, puis en déduire rg(gof) = rg(f).

EX 7 : Soit $E \xrightarrow{f} E$ où E est un espace vectoriel de dimension $n \ge 1$ sur \mathbb{R} et λ un réel donné.

- 1) Prouver que f est un endomorphisme de E .
- 2) Vérifier que $\forall x \in E$, (x, f(x)) est une famille liée . Etudier la réciproque . (on pourra considérer la matrice de f dans une base de E)
- **EX 8 :** Soit a, b, c trois réels tels que $a^2 + b^2 + c^2 = k > 0$

Soit
$$A = \begin{pmatrix} a^2 & ba & ca \\ ab & b^2 & cb \\ ac & bc & c^2 \end{pmatrix}$$
 et $U = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$

- 1) Exprimer les colonnes de A en fonction de U . En déduire le rang de A .
- 2) Calculer AU. En déduire sans calcul que A est semblable à $K = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & k \end{pmatrix}$

EX 9 : Soit f un endomorphisme d'un espace vectoriel E de dimension n tel que $f^n = 0$ et $f^{n-1} \neq 0$

- 1) Montrer qu'il existe un vecteur x n'appartenant pas à $Kerf^{n-1}$.

 Montrer alors que la famille $B = (x, f(x), f^2(x), ..., f^{n-1}(x))$ est une base de E.
- 2) Déterminer la matrice M de l'endomorphisme f dans la base B .