

Code sujet: 283

Conceptions: HEC Paris - ESCP Europe

MATHEMATIQUES II

OPTION SCIENTIFIQUE

Mercredi 7 mai 2014, de 8 h. à 12 h.

La présentation, la lisibilité, l'orthographe, la qualité de la rédaction, la clarté et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.

Les candidats sont invités à **encadrer** dans la mesure du possible les résultats de leurs calculs. Ils ne doivent faire usage d'aucun document : **l'utilisation de toute calculatrice et de tout matériel électronique est interdite**. Seule l'utilisation d'une règle graduée est autorisée.

Si au cours de l'épreuve, un candidat repère ce qui lui semble être une erreur d'énoncé, il la signalera sur sa copie et poursuivra sa composition en expliquant les raisons des initiatives qu'il sera amené à prendre

Dans tout le problème, k désigne un entier supérieur ou égal à 2.

Notations algébriques

- Pour tout $n \in \mathbb{N}^*$, on note $\mathcal{M}_{n,1}(\mathbb{R})$ l'ensemble des matrices-colonnes à n lignes à coefficients réels et $\mathcal{M}_n(\mathbb{R})$ l'ensemble des matrices carrées à n lignes et n colonnes à coefficients réels. On identifie les ensembles $\mathcal{M}_1(\mathbb{R})$ et \mathbb{R} en assimilant une matrice de $\mathcal{M}_1(\mathbb{R})$ à son unique coefficient.
- La base canonique de $\mathcal{M}_{k,1}(\mathbb{R})$ est notée $\mathcal{C}_k = (e_1, e_2, \dots, e_k)$ et l'espace vectoriel $\mathcal{M}_{k,1}(\mathbb{R})$ est muni de sa structure euclidienne usuelle pour laquelle la base \mathcal{C}_k est orthonormale. On note $\langle u, v \rangle$ le produit scalaire de deux vecteurs u et v de $\mathcal{M}_{k,1}(\mathbb{R})$ et $||u|| = \sqrt{\langle u, u \rangle}$ la norme du vecteur u.
- Pour toute matrice-colonne d de $\mathcal{M}_{n,1}(\mathbb{R})$ de composantes d_1, d_2, \ldots, d_n , on note $\mathrm{Diag}(d)$ la matrice diagonale de $\mathcal{M}_n(\mathbb{R})$ définie par :

$$\operatorname{Diag}(d) = \begin{pmatrix} d_1 & 0 & \cdots & 0 \\ 0 & d_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & d_n \end{pmatrix}.$$

• La transposée d'une matrice M est notée ${}^t\!M$ et I_k désigne la matrice identité de $\mathcal{M}_k(\mathbb{R})$.

Notations probabilistes

- Toutes les variables aléatoires et tous les vecteurs aléatoires qui interviennent dans ce problème sont définis sur un même espace probabilisé (Ω, \mathcal{A}, P) .
- On dit qu'un vecteur aléatoire discret (Y_1, Y_2, \dots, Y_k) , à valeurs dans \mathbb{R}^k , admet une espérance lorsque chacune de ses composantes en admet une.
 - On note Y la matrice-colonne de $\mathcal{M}_{k,1}(\mathbb{R})$ de composantes Y_1,Y_2,\ldots,Y_k et $\mathcal{E}(Y)$ la matrice-colonne de $\mathcal{M}_{k,1}(\mathbb{R})$ dont les composantes sont les espérances $E(Y_1),E(Y_2),\ldots,E(Y_k)$.

Lorsque chacune des composantes Y_i $(i \in [1, k])$ admet une variance, on appelle matrice de variance-covariance de Y, notée $\mathcal{V}(Y)$, la matrice symétrique de $\mathcal{M}_k(\mathbb{R})$ dont les coefficients diagonaux sont les variances $V(Y_i)$ et les coefficients non diagonaux les covariances $Cov(Y_i, Y_j)$ pour tout $(i, j) \in [1, k]^2$ avec $i \neq j$.

En résumé, on pose sous réserve d'existence :

$$\mathcal{E}(Y) = \begin{pmatrix} E(Y_1) \\ E(Y_2) \\ \vdots \\ E(Y_k) \end{pmatrix} \quad \text{et} \quad \mathcal{V}(Y) = \begin{pmatrix} V(Y_1) & \operatorname{Cov}(Y_1, Y_2) & \cdots & \operatorname{Cov}(Y_1, Y_k) \\ \operatorname{Cov}(Y_2, Y_1) & V(Y_2) & \cdots & \operatorname{Cov}(Y_2, Y_k) \\ \vdots & \vdots & \ddots & \vdots \\ \operatorname{Cov}(Y_k, Y_1) & \operatorname{Cov}(Y_k, Y_2) & \cdots & V(Y_k) \end{pmatrix}.$$

• Dans tout le problème, on note $p = \begin{pmatrix} p_1 \\ p_2 \\ \vdots \\ p_k \end{pmatrix}$ une matrice-colonne de $\mathcal{M}_{k,1}(\mathbb{R})$ vérifiant $\sum_{i=1}^k p_i = 1$ et pour

tout $i \in [1, k], p_i \ge 0$.

L'objet du problème est l'étude des propriétés des matrices de variance-covariance en liaison avec la loi des vecteurs aléatoires correspondants.

Partie I. Lois généralisées de Bernoulli

Dans cette partie, on note u la matrice-colonne de $\mathcal{M}_{k,1}(\mathbb{R})$ dont tous les coefficients valent 1.

1. Soit
$$a = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_k \end{pmatrix}$$
 une matrice-colonne non nulle de $\mathcal{M}_{k,1}(\mathbb{R})$ et $\alpha = \sum_{i=1}^k a_i$. On pose : $M = a^t u$.

- a) Calculer la matrice M et préciser son rang.
- b) Calculer la matrice Ma et en déduire une valeur propre de M.
- c) Montrer que $M^2 = \alpha M$. Que peut-on en déduire sur les valeurs propres de M?
- d) Montrer que M est diagonalisable si et seulement si $\alpha \neq 0$.
- e) Pour quelles valeurs de α la matrice $I_k M$ est-elle inversible?
- f) On suppose que $\alpha = 1$. Montrer que M est la matrice dans la base canonique de \mathbb{R}^k d'un projecteur dont on précisera l'image et le noyau. Dans quel cas ce projecteur est-il orthogonal?

On dit qu'un vecteur aléatoire (X_1, X_2, \ldots, X_k) suit la loi généralisée de Bernoulli de paramètre p, notée $\mathcal{B}_k(p)$, si on a :

$$\forall i \in \llbracket 1, k
rbracket, Pig([X=e_i] ig) = p_i, \text{ avec } X = egin{pmatrix} X_1 \ X_2 \ dots \ X_k \end{pmatrix}.$$

- 2. Soit (X_1, X_2, \ldots, X_k) un vecteur aléatoire suivant la loi $\mathcal{B}_k(p)$.
 - a) Pour $i \in [1, k]$, comparer les événements $[X = e_i]$ et $[X_i = 1]$; en déduire que chaque variable aléatoire X_i suit une loi de Bernoulli de paramètre p_i et écrire la matrice $\mathcal{E}(X)$.
 - b) Quelle est la loi de la variable aléatoire $X_1 + X_2$?
 - c) Montrer que $Cov(X_1, X_2) = -p_1p_2$.
 - d) Écrire la matrice $\mathcal{V}(X)$.
- 3. Soit M(p) la matrice de $\mathcal{M}_k(\mathbb{R})$ définie par : $M(p) = p^t u$.
 - a) Vérifier l'égalité : $\mathcal{V}(X) = (I_k M(p)) \mathrm{Diag}(p)$.
 - b) Montrer que si p_1, p_2, \ldots, p_k sont différents de 0, le rang de $\mathcal{V}(X)$ est égal à k-1.
 - c) Soit σ une permutation de [1, k] et p_{σ} la matrice-colonne de $\mathcal{M}_{k,1}(\mathbb{R})$ de composantes $p_{\sigma(1)}, p_{\sigma(2)}, \dots, p_{\sigma(k)}$. Montrer que $\mathcal{V}(X)$ est semblable à $(I_k - p_{\sigma}^{t_k}u)$ Diag (p_{σ}) .

d) Exprimer le rang de $\mathcal{V}(X)$ en fonction du nombre d'éléments i de [1,k] pour lesquels on a $p_i \neq 0$.

Partie II. Tirages avec remise dans une population stratifiée

Dans cette partie, on suppose que pour tout $i \in [1, k]$, on a $p_i > 0$ et que p_1, p_2, \ldots, p_k sont les proportions d'individus appartenant aux diverses catégories d'une population statistique scindée en k catégories distinctes. Pour modéliser une suite illimitée de tirages équiprobables avec remise effectués dans cette population, on utilise des variables aléatoires $X_i^{(n)}$ définies par :

$$\forall\,n\in\mathbb{N}^*,\,\forall\,i\in[\![1,k]\!],\,X_i^{(n)}=\left\{\begin{matrix}1 & \text{si l'individu extrait au n-ième tirage appartient à la i-ème catégorie i-ème catégor$$

On suppose que les vecteurs aléatoires $\left(X_1^{(n)},X_2^{(n)},\ldots,X_k^{(n)}\right)$ $(n\in\mathbb{N}^*)$ suivent chacun la loi $\mathcal{B}_k(p)$ (partie I) et sont mutuellement indépendants. Cette indépendance mutuelle signifie que pour tout entier $n\geqslant 2$ et pour toutes fonctions $\varphi_1,\varphi_2,\ldots,\varphi_n$ définies sur \mathbb{R}^k à valeurs réelles, les variables aléatoires $\varphi_1\left(X_1^{(1)},X_2^{(1)},\ldots,X_k^{(1)}\right)$, $\varphi_2\left(X_1^{(2)},X_2^{(2)},\ldots,X_k^{(2)}\right),\ldots,\varphi_n\left(X_1^{(n)},X_2^{(n)},\ldots,X_k^{(n)}\right)$ sont indépendantes.

Pour tout $n \in \mathbb{N}^*$, on note $X^{(n)}$ la matrice-colonne de $\mathcal{M}_{k,1}(\mathbb{R})$ de composantes $X_1^{(n)}, X_2^{(n)}, \ldots, X_k^{(n)}$ et $S^{(n)}$ la matrice-colonne de $\mathcal{M}_{k,1}(\mathbb{R})$ de composantes $S_1^{(n)}, S_2^{(n)}, \ldots, S_k^{(n)}$, où pour tout $i \in [\![1,k]\!]$, on a $S_i^{(n)} = \sum_{j=1}^n X_i^{(j)}$.

- 4.a) Préciser l'ensemble N_n des matrices-colonnes s de $\mathcal{M}_{k,1}(\mathbb{R})$ pour lesquelles on a $P([S^{(n)}=s])>0$.
 - b) Déterminer les lois respectives des deux variables aléatoires $S_1^{(n)}$ et $S_1^{(n)} + S_2^{(n)}$. Sont-elles indépendantes ?
 - c) Montrer que $\mathcal{V}(S^{(n)}) = n \, \mathcal{V}(X^{(1)})$.
- 5. Soit H un élément de A vérifiant 0 < P(H) < 1, \overline{H} l'événement contraire de H et W une variable aléatoire discrète admettant une variance.
 - a) Justifier l'existence de $E(W^2|H)$, espérance de W^2 pour la probabilité conditionnelle P_H .
 - b) On pose : $V(W|H) = E(W^2|H) (E(W|H))^2$ (variance de W pour la probabilité conditionnelle P_H). En utilisant le système complet d'événements (H, \overline{H}) et la formule de l'espérance totale pour W et W^2 , établir l'inégalité : $V(W) \ge P(H) V(W|H)$.
- 6. Pour tout $i \in [1, k]$, on note T_i le temps d'attente du premier tirage d'un individu de la *i*-ème catégorie et on note T la matrice-colonne de $\mathcal{M}_{k,1}(\mathbb{R})$ de composantes T_1, T_2, \ldots, T_k .
 - a) Soit $i \in [1, k]$. Justifier que la probabilité que T_i soit infini est nulle. Quelle est la loi de T_i ?
 - b) On pose : $H_k = \bigcap_{i=1}^{k-1} [T_i = i]$. Calculer $P(H_k)$. Préciser la loi conditionnelle de $T_k (k-1)$ sachant H_k . En déduire $E(T_k|H_k)$ et $V(T_k|H_k)$.
 - c) En exploitant le résultat de la question 5.b), établir pour tout vecteur $v = (v_1, v_2, \dots, v_k)$ de \mathbb{R}^k , l'inégalité :

$$V\left(\sum_{i=1}^k v_i T_i\right) \geqslant \frac{v_k^2 (1-p_k)}{p_k^2} \times \prod_{i=1}^{k-1} p_i.$$

d) Montrer plus généralement que pour tout $j \in [1, k]$, on a : $V\left(\sum_{i=1}^k v_i T_i\right) \geqslant \frac{v_j^2 (1-p_j)}{p_j^2} \times \prod_{\substack{i \in [1, k] \\ i \neq j}} p_i$.

Partie III. Support et rang stochastiques d'un vecteur aléatoire

Dans toute cette partie, (Y_1, Y_2, \ldots, Y_k) désigne un vecteur aléatoire discret, à valeurs dans \mathbb{R}^k , dont chaque composante admet une espérance et une variance. On rappelle que Y est la matrice-colonne de $\mathcal{M}_{k,1}(\mathbb{R})$ de composantes Y_1, Y_2, \ldots, Y_k .

7. On appelle support vectoriel de Y, tout sous-espace vectoriel F de $\mathcal{M}_{k,1}(\mathbb{R})$ tel que $P([Y - \mathcal{E}(Y) \in F]) = 1$. On note $\mathcal{S}(Y)$ l'ensemble des supports vectoriels de Y.

IMPRIMERIE NATIONALE - 14 1219 - D'après documents fournis

- a) Justifier l'existence d'un plus petit élément de l'ensemble des dimensions des éléments de S(Y). Ce plus petit élément est appelé le rang stochastique de Y et noté $R_s(Y)$.
- b) Dans quels cas le rang stochastique $R_s(Y)$ est-il nul?
- c) Montrer que l'intersection de deux supports vectoriels F_1 et F_2 de Y est un support vectoriel de Y.
- d) En déduire l'existence d'un unique élément F de $\mathcal{S}(Y)$ tel que la dimension de F soit égale à $R_s(Y)$. L'espace vectoriel F est appelé le support stochastique de Y.
- 8. Soit u une matrice-colonne de $\mathcal{M}_{k,1}(\mathbb{R})$ de composantes $u_1,u_2,\ldots,u_k.$
 - a) Montrer que la variable aléatoire $\sum_{i=1}^{k} u_i Y_i$ admet une variance, égale à $u \mathcal{V}(Y)u$.
- b) Établir l'existence d'un unique vecteur $(\lambda_1,\lambda_2,\dots,\lambda_k)$ de \mathbb{R}^k tel que $\mathcal{V}(Y)$ soit semblable à la matrice $\operatorname{Diag}(\lambda)$ et pour lequel $\lambda_1 \geqslant \lambda_2 \geqslant \ldots \geqslant \lambda_k \geqslant 0$ (on note $\operatorname{Diag}(\lambda)$ la matrice diagonale de $\mathcal{M}_k(\mathbb{R})$ de coefficients diagonaux $\lambda_1, \lambda_2, \ldots, \lambda_k$).
- c) On pose : $||Y \mathcal{E}(Y)||^2 = \sum_{i=1}^k (Y_i E(Y_i))^2$. Montrer que $E(||Y \mathcal{E}(Y)||^2) = \sum_{i=1}^k \lambda_i$.
- 9. Soit $q \in [1, k]$, F un sous-espace vectoriel de $\mathcal{M}_{k,1}(\mathbb{R})$ de dimension q et $(f^{(1)}, f^{(2)}, \ldots, f^{(q)})$ une base orthonormale de F.
 - a) Soit $\omega \in \Omega$. Justifier l'existence de $Q_F(\omega) = \inf\{\|Y(\omega) \mathcal{E}(Y) x\|^2; x \in F\}$ et montrer que :

$$||Y(\omega) - \mathcal{E}(Y)||^2 = Q_F(\omega) + \sum_{j=1}^q \langle Y(\omega) - \mathcal{E}(Y), f^{(j)} \rangle^2.$$

- b) À l'aide de la question 8, établir l'égalité : $E(Q_F) = \sum_{i=1}^k \lambda_i \sum_{j=1}^q t_j f^{(j)} \mathcal{V}(Y) f^{(j)}$.
- c) Que devient l'égalité précédente lors que $F=\mathcal{M}_{k,1}(\mathbb{R})\,?$
- 10.a) Montrer que pour toute matrice-colonne f de $\mathcal{M}_{k,1}(\mathbb{R})$ vérifiant ||f||=1, on a : ${}^tf \mathcal{V}(Y)f \leqslant \lambda_1$.
 - b) En déduire la borne inférieure de $E(Q_F)$ lorsque F décrit l'ensemble des droites vectorielles de $\mathcal{M}_{k,1}(\mathbb{R})$.
 - c) Dans cette question, on suppose que (Y_1, Y_2, \ldots, Y_k) suit la loi $\mathcal{B}_k(p)$, où pour tout $i \in [1, k]$, on a $p_i = \frac{1}{k}$ Calculer les valeurs propres de $\mathcal{V}(Y)$ et la borne inférieure de $E(Q_F)$ pour l'ensemble des droites vectorielles F de $\mathcal{M}_{k,1}(\mathbb{R})$, puis préciser pour quelle(s) droite(s) cette borne est atteinte.
- 11. On suppose que le rang r de $\mathcal{V}(Y)$ est non nul. On note F_0 la somme des sous-espaces propres associés aux valeurs propres non nulles de $\mathcal{V}(Y)$ et F un sous-espace vectoriel de $\mathcal{M}_{k,1}(\mathbb{R})$ tel que $F\subset F_0$ et $F\neq F_0$.
 - a) Calculer $E(Q_{F_0})$ et en déduire que F_0 est un support vectoriel de Y.
 - b) Justifier l'existence d'un vecteur $f^{(r)}$ de F_0 , orthogonal à F et de norme 1.
 - c) Montrer que ${}^tf^{(r)}\mathcal{V}(Y)f^{(r)}>0$ et en déduire que $\overset{-}{E}(Q_F)\neq 0$.
 - d) Montrer que le rang stochastique $R_s(Y)$ de Y est égal à r.
- 12. Dans cette question, on reprend les définitions et notations de la question 6.
 - a) À l'aide de la question 6.d), montrer que le rang stochastique $R_s(T)$ de T est égal à k.
 - b) Montrer que pour tout $i \in \mathbb{N}^*$, on a : $E(T_1T_2 | [T_1 = i] \cap [T_2 > i]) = i\left(i + \frac{1}{p_2}\right)$. c) Établir la relation : $E(T_1T_2) = \frac{1}{p_1p_2} \frac{1}{p_1 + p_2}$.

 - d) On note $\Pi = (\pi_{i,j})_{1 \leq i,j \leq k}$ la matrice de $\mathcal{M}_k(\mathbb{R})$ définie par : $\pi_{i,j} = \left\{ \begin{array}{ll} \frac{1-p_i}{p_i^2} & \text{si } i=j \\ -\frac{1}{p_i+p_i} & \text{si } i \neq j \end{array} \right.$

Montrer que la matrice Π est inversible.